Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 66(7): 4294-4323, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37000154

RESUMEN

The heterocyclic vanilloid compound capsaicin is responsible for the spicy and pungent flavor of chili peppers. Several convergent studies have shown that capsaicin suppresses the growth of multiple human cancers. Apart from capsaicin, natural and synthetic capsaicin-like compounds display growth suppressive activity in human cancers. The pharmacophore of capsaicin is comprised of three regions, namely region A (the aromatic ring), region B (the amide bond), and region C (the side chain). The present manuscript describes the isolation and synthesis of capsaicin analogs which have structural modifications in region B of the molecule. Furthermore, the pharmacokinetic properties, anticancer activity of region B capsaicin analogs, as well as the signaling pathways (underlying the growth-inhibitory effects of region B capsaicin analogs) have also been described. The discovery of novel, second-generation region B capsaicin analogs may foster the hope of innovative nutrition-based combination therapies in human cancers.


Asunto(s)
Antineoplásicos , Capsicum , Humanos , Capsaicina/farmacología , Capsicum/química , Capsicum/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
2.
Pharmacol Ther ; 238: 108177, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35351463

RESUMEN

Capsaicin (trans-8-methyl-N-vanillyl-6-noneamide) is a hydrophobic, lipophilic vanilloid phytochemical abundantly found in chili peppers and pepper extracts. Several convergent studies show that capsaicin displays robust cancer activity, suppressing the growth, angiogenesis and metastasis of several human cancers. Despite its potent cancer-suppressing activity, the clinical applications of capsaicin as a viable anti-cancer drug have remained problematic due to its poor bioavailability and aqueous solubility properties. In addition, the administration of capsaicin is associated with adverse side effects like gastrointestinal cramps, stomach pain, nausea and diarrhea and vomiting. All these hurdles may be circumvented by encapsulation of capsaicin in sustained release drug delivery systems. Most of the capsaicin-based the sustained release drugs have been tested for their pain-relieving activity. Only a few of these formulations have been investigated as anti-cancer agents. The present review describes the physicochemical properties, bioavailability, and anti-cancer activity of capsaicin-sustained release agents. The asset of such continuous release capsaicin formulations is that they display better solubility, stability, bioavailability, and growth-suppressive activity than the free drug. The encapsulation of capsaicin in sustained release carriers minimizes the adverse side effects of capsaicin. In summary, these capsaicin-based sustained release drug delivery systems have the potential to function as novel chemotherapies, unique diagnostic imaging probes and innovative chemosensitization agents in human cancers.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/efectos adversos , Capsaicina/farmacología , Capsaicina/uso terapéutico , Preparaciones de Acción Retardada/uso terapéutico , Humanos , Neoplasias/inducido químicamente , Neoplasias/tratamiento farmacológico , Dolor/tratamiento farmacológico
3.
Bio Protoc ; 12(4): e4320, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35340295

RESUMEN

The invasion of tumor cells into the neighboring blood vessels and lymph nodes is a vital step for distant metastasis. Traditionally, the invasive activity of growth factors (or the anti-invasive activity of drugs) is measured with the Boyden chamber assay. However, this assay has a few disadvantages like poor physiological relevance of transwell inserts and an inability to control chemokine gradients. The Boyden chamber assay is one of the most prevalent methods to measure the invasion of cancer cells. It would be advantageous to develop another assay that could validate the results of the Boyden chamber assay. With this in mind, our laboratory developed the spherical invasion assay (SIA) to measure the pro-invasive activity of human cancer cells. The SIA also circumvents some of the drawbacks of the Boyden chamber assay. The present manuscript measures the anti-invasive activity of the Src kinase inhibitor PP2 in A549 human non-small cell lung carcinoma (NSCLC) cells using the SIA. The SIA protocol is comprised of two steps. In the first step, A549 human NSCLC cells (treated or not with PP2) were mixed with Matrigel and seeded in the middle of an eight-well chamber slide. After 24 h, a second layer of Matrigel was overlaid over the first layer. Over the course of the next 24 h, the A549 cells invade from the primary to the secondary Matrigel layers. Subsequently, the cells are visualized by phase-contrast microscopy and the images obtained are quantified using ImageJ to calculate the anti-invasive activity of PP2 in A549 cells. The results of the SIA correlate well with Boyden chamber assays. The SIA may be adapted for multiple experimental designs, such as drug screening (to combat invasion and metastasis), measuring the pro-invasive activity of growth factors, and elucidating the signaling pathways underlying the pro-invasive/anti-invasive activity of biological modifiers. Graphic abstract: Diagrammatic illustration of the spherical invasion assay ( Hurley et al., 2017 ) . A. The first layer is comprised of human cancer cells mixed in a 1:1 suspension with Phenol Red containing Matrigel (represented as LAYER 1 in the figure). After 24 h, the cancer cells grow and extend up to the boundary of this first layer. B. A second layer of 1:1 solution Phenol Red-free Matrigel, in Phenol Red-free RPMI (represented as LAYER 2 in the figure) is added on top of the first Matrigel spot. The cells are incubated for 24 h at 37°C. C. Over these 24 h, the cancer cells invade from the primary layer into the secondary Matrigel layer. The chamber slides are observed by phase-contrast microscopy. D. A representative photograph of the images obtained by the SIA is shown. The black arrow indicates the cancer cells invading into the second layer of Matrigel. The dotted line represents the interface between the two layers. The distance to which the cells have traveled (into the secondary Matrigel layer) is measured at ten sites (for each photograph) in a randomized double-blind fashion by three independent observers, using NIH ImageJ Version 1.47. This process is repeated for three separate photographic fields per sample.

4.
J Med Chem ; 64(3): 1346-1361, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33508189

RESUMEN

Capsaicin displays robust growth-inhibitory activity in multiple human cancers. However, the feasibility of capsaicin as a clinically relevant anticancer drug is hampered by its adverse side effects. This concern has led to extensive research focused on the isolation and synthesis of second-generation nonpungent capsaicin analogues with potent antineoplastic activity. A major class of nonpungent capsaicin-like compounds belongs to the N-acyl-vanillylamide (N-AVAM) derivatives of capsaicin (hereafter referred as N-AVAM capsaicin analogues). This perspective discusses the isolation of N-AVAM capsaicin analogues from natural sources as well as their synthesis by chemical and enzymatic methods. The perspective describes the pharmacokinetic properties and anticancer activity of N-AVAM capsaicin analogues. The signaling pathways underlying the growth-inhibitory effects of N-AVAM capsaicin analogues have also been highlighted. It is hoped that the insights obtained in this perspective will facilitate the synthesis of a second generation of N-AVAM capsaicin analogues with improved stability and growth-suppressive activity in human cancer.


Asunto(s)
Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/uso terapéutico , Capsaicina/análogos & derivados , Capsaicina/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/farmacocinética , Capsaicina/química , Capsaicina/farmacocinética , Humanos
5.
Am J Med Genet A ; 155A(5): 1162-4, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21456030

RESUMEN

22q11.2 deletion syndrome is the most common microdeletion syndrome. Wilms tumor is one of the most common solid tumors in childhood yet 22q11.2 deletion and Wilms tumor only once have been reported in the same patient. Here we describe a young patient with subtle clinical findings suggestive of 22q11.2 at the time of diagnosis who subsequently developed Wilms tumor. We assert the importance of a low threshold for screening for 22q11.2 deletion and the associated phenotypes and maintaining vigilance in screening for common primary malignancies in patients with known 22q11.2 deletion.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 22 , Tumor de Wilms/genética , Preescolar , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...